
r A-A107 4bb CALIFORNIA UNIV BERKELEY ELELRONICS RESEARCH LAU F/6 20/9
KINK ISTABILITIES IN LONG ION LAYERSSE.(US)REDNO C07

UNCLASSIFIED UCB/EHN MB /7 NL-

IImIIIIIIIIIu
IIIIIIIIIIIIIfll
IIIIIIflIlIfllflfflf
IIIIhhhhhhhh



111111.2 liiZ1 1.2

* ~* MICROCOPY RLSOLUTION ILS! CHARI
NA11A NA, HUR Al 1, NA r,



4z

-- i,



KINK INSTABILITIES IN LONG ION LAYERS

by

Douglas S. Harned

Memorandum No. UCB/ERL M81/73

16 September 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Kink Instabilities in Long Ion Layers

Douglas S. Harned r
Electronics Research Laboratory

University of Califo-nia I

Berkeley, CA 94720

ABSTRACT

Kink instabilities in long ion layers immersed in a dense back-

ground plasma are studied. A numerical extension of the analytic

model of Lovelace indicates that these instabilities will occur for values

of the self-magnetic field index below those predicted previously. A

quasineutral hybrid simulation code has been used to verify these lower

thresholds. The simulations also show that the end of exponential

growth occurs due to a nonlinear shift in the betatron frequency at large

amplitude, producing an increase in layer thickness and a layer which

has many non-axis-encircling ions.
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I. INTRODUCTION

Field-reversing ion layers have been considered as a possible means of confining

and heating a fusion plasma. It has also been proposed that such ion layers could pro-

vide a stabilizing influence on the tilt mode in the spheromak" 2 . However, ion layers

may be unstable due to a kink mode which results from the coupling of compressional

Alfven waves with the betatron motion of the layer particles.

The ion layer configuration is shown in Fig. 1. An ion beam, at radius R and of

thickness a, flows perpendicularly to an external magnetic field, Be-Be'j. The beam

current, Jb, produces a self-magnetic field, B, which may be large enough to reverse

the total magnetic field on axis. The layer is immersed in a background plasma such

that nb << n., where nb and n. are the densities of the beam and plasma, respectively.

The background plasma is assumed to be sufficiently dense that v<< i, where vA is

the background plasma Alfven speed, vA =-Be/ (41r n M) 1/2, and T9 is the average rota-

tional velocity of the beam. Mp is defined to be the mass of an ion in the background

plasma. A conducting wall is located at radius r-r.. There is no variation in the axial

direction (8/8z-0). It is this case, k,-O, which is expected to be the most unstable

for a long layer. This has been indicated by Sudan and Rosenbluth 3 through the appli-

cation of an energy principle derived from the Vlasov equation to obtain sufficient

conditions for stability. Kink modes in these layers correspond to perturbations of the

form "i-? ,exp (im#- iw t) with mo )2. This paper discusses the results of theory and

simulations concerning the linear and nonlinear behavior of these modes. The term

*kink*, in reference to these modes, arises because the azimuthal mode number, m, is

analogous to the toroidal mode number of a thin ring, or 'bicycle tire", configuration.
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Section H presents theoretical results for instability thresholds and linear growth

rates as determined by a numerical generalization of an analysis by Lovelace 4. Section

II describes the model for our hybrid simulation code which has been used to study

ion layer kink modes; The simulation results pertaining to the linear behavior of kink

instabilities are presented in Sec. IV. Comparisons are made with the results of Sec.

II. Section V describes the nonlinear behavior of kink modes as observed in the

hybrid simulations.

II. LINEAR THEORY

The linear stability of kink modes has been studied by Lovelace in the approxi-

mation of a linear beam5 6 and as a long layer4, neglecting axial variation. Similar

instabilities have been studied by Finn and Sudan7 in the bicycle tire limit. Our model

follows that of Lovelace 4 in which kink and precessional modes, corresponding to per-

turbations in radius of the form i-r.,exp(imO-io.t), were studied. In this paper we

consider the case in which the external magnetic field is uniform. In this case the pre-

cessional mode (m-) is neutrally stable. We will restrict this analysis to modes with

m>2 (i.e., kink modes).

The analysis of Lovelace 4 treated the background plasma ions and electrons as

fluids. The layer was assumed to be composed of collisionless ions with their behavior

described by the particle equations of motion. The layer was assumed to be thin,

(a/R)2<< 1, and the modes were assumed to be of low frequency, such that

(W/ H) 2 <<1, where (I is the layer rotation frequency. This assumption allows the

forces on the layer particles to be given by averages over the layer thickness. The per-

turbation, e., was assumed to be first order, (,/a)<<, as were the perturbed field

L dam
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quantities, 8B1/B<< 1, 8E1E,<< 1, and 8E/E0<< 1. The equations were linearized;

i.e., second and higher order terms were neglected. The following equations were

obtained by Lovelace4 for the perturbation a,:

(d2/d?) -n 2 (1+-q) e+, F, (a)

+ + <BE,> - (<iE9> lb)
tCMb r Mma~r- 7-1cSB < -L ,m (1

MbCn 2  Or (iC)

where the radial averages are weighted by the beam current,

< (...) > M frdrJ r)(...)If rdJ,4(,).

Mb is defined to be the mass of a layer ion, '9 the average layer rotation velocity, and

,9, is the self-magnetic field index, which is approximately equal to (9/0fl) 2. The

layer betatron frequency, (a1 , is the average frequency at which the ions oscillate radi-

ally in the self-magnetic field of the layer. Defining to be the field-reversal factor,

makes -, of order (2R/a)C. (Note that this definition of C is not the same as used by

Lovelace4). The perturbed field quantities are determined by the following equations4:

67)Al(B 2 ~ 1 rOr rJ

Olr r B r (2b

where

A40 VA2 1+ (VA/C) 2  (20)
A d (1+(VA/C) 2) 2_(W/C*) 2

A [b VA (2d)
I (C +(VA/c)e,)2-(W/ 

(,)2

AB, -- 8B2- (4il c),.lb (20)
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w (r ir/mi)41r.Jb/c. (20

AB, is obtained from solving the differential equation

1f( rA a -& BzJB,-AB - lAbA Bz
r A r al r r2 Ir ab

=I~ ~ T m2 a (dnV_ ,0 r(AaOIII+ 8 -4 rm b 3" 2 C " r Or OrI  r j

Assuming that Jtb and Eq vanish at a conducting wall at r-rw, Eq. 2b provides the

boundary condition on AB,:

1 .LAB imAb(rw)
"B Or ," rwAa(rw)

Note that A b and A a are functions of radius because they depend on vA which, in a

strong ion layer, will normally depend on r.

Lovelace 4 used Eqs. 1,2,3, and 4 to solve for the instability thresholds and

growth rates. In order to do this analytically, it was assumed that VA=constant and

that the layer had sharp boundaries. Thresholds were obtained for two cases: (1)
2<< (vA/a) 2 and (2) (02 < (VA/a) 2 with 2<<-/2, where ar and -y are the real and

imaginary parts of the frequency. In both cases 71 < m 2-1 was found to be sufficient

for stability. The assumption v,-constant implies that the plasma density is smaller

inside than outside the layer. This assumption does not correspond to the situation in

real three-dimensional systems when the field-reversal factor is close to or greater than

unity. This is because in real systems the density will not have large variations along a

given closed field line. The comment is made by Lovelace 4 that it appears feasible to

solve Eq. 3 numerically in order to remove this difficulty.

We have chosen to extend the analysis of Lovelace' in order to eliminate the

assumption of constant Alfven speed, as well as the frequency restrictions w 2 < (vA/a) 2
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and W,<y 2, by performing a numerical solution of the system of Eqs. 1, 2, 3, and 4.

The procedure used for this numerical solution is described in Appendix A.1. Rather

than a sharp boundary layer equilibrium distribution, an exponential rigid rotor equili-

brium8 is treated. The beam current density for this distribution is

- ,(r) enoilrsechj , (5)

and the magnetic field profile is

B.W-tanh--jl (6)

in Eqs. 5 and 6, v, is the thermal velocity of the rigid rotor distribution, r, and r0 are

adjustable parameters, and no is a normalization factor for the density. The equili-

brium background plasma density is considered to be uniform.

Our numerical results show significant differences from the analytic results of

Lovelace4. In particular we find the instability threshold for a given mode to occur at

somewhat lower values of 7) than m2-1. Additionally, we have found that the insta-

bility thresholds are influenced by the Alfven transit time across the layer thickness.

The approximate thresholds are summarized in Table 1 for different values of the

Alfven transit time. One can see from Table 1 that for a fixed layer thickness, a, an

increased background density provides a stabilizing effect. The mode with the lowest

instability threshold in q., is the m-2 mode. The low thresholds here imply that a

thick layer, acwR, is a necessary condition for an ion layer to be stable near field-

reversal (C=) (this condition can only be called a necessary one since this analysis

requires a<< r to determine a growth rate). These results were not available under

the simplifying assumptions used by Lovelace 4 because near the thresholds w,>y and

OM vAI a.

m • , VJO
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The real and imaginary parts of the frequency of modes for a layer with (RIa)-5

are shown as a function of field-revers; factor, 4, in Figs. 2 and 3. The maximum

growth rate for a given mode occurs when w(wP-mf1) 2. Lovelace4 found the

growth rates to be linearly proportional to the Alfven speed. We find that the critical

factor is not simply the Alfven speed, but the Alfven transit time across the layer

thickness. The growth rate of the m-2 mode for layers of varying background density

are shown in Fig. 4 for a layer with R/a-=S. As the Affven transit time becomes very

large and ( 2a v/a 2, then the mode will be stabilized because the layer will no

longer behave rigidly.

For cases in which the assumptions of Lovelace 4 are valid, our growth rates

reduce to those obtained analytically.

III. SIMULATION MODEL

The simulation code that we have used to study ion layer kink instabilities is a

two-dimensional, fully' nonlinear, quasineutral hybrid code. Such codes have been

used in one-dimensional problems by Byers et al. 9 and in two-dimensional studies of

theta pinch implosions by Hewett' 0 . Because ion layers are characterized by ion Lar-

mot radii comparable to the system size, it is necessary to treat the ions as particles.

Since the time scales of kink modes are much longer than the ion-cyclotron period, it

is unnecessary to follow the details of the electron dynamics. Hence, the electrons are

considered to be an inertialess fluid. In addition, electromagnetic radiation effects are

not important on these time scales, aBowing us to use the Darwin version of

Ampere's law (i.e., the transverse displacement current is neglected).

The Darwin version of Ampere's law is combined with the inertialess version of

-I
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the electron momentum equation and the assumption of quasineutrality to determine

the electric field. The expression for the electric field (as derived in Ref. 11, or simi-

larly in Ref. 9) is

4vn e nec nie

In Eq. 7 the ion density, ni, and ion current density, 7, are determined from the ion

particles by linear weighting (particle-in-cell) from the grid. The magnetic field is

advanced in time by Faraday's law and the ions are moved by the equations of

motion. A more detailed description of this code may be found in Ref. 11.

The equations are solved in the r-O plane (see Fig. 1). However, for numerical

reasons, cartesian coordinates are used in the simulation. No axial variation is allowed

(i.e., 8Oz-mO) and Bx, By, E, J., and v, are all set equal to zero. Doubly periodic

boundaries have been used in the simulation results discussed here. A conducting

wall at radius r,, has a weakly stabilizing effect on ion layer kink modes. The results

of Lovelace 4 indicate that the effect of the wall will be negligible unless

(r,-R)/R << 1; we have confirmed this result by the numerical calculations described

in Sec. U.

Our simulations begin with the loading of a cold uniform background plasma of

fluid electrons and particle ions with a uniform density n,. Then a Vlasov equilibrium

(i.e., afoO t-O) ion layer distribution, corresponding to an exponential rigid rotor,

) no 2 1 r2-r12 I v,2 r(v-r)21 (8)
f (r, J, v) ex - V,2

is added. This distribution produces the ion current and magnetic field profiles

described in Sec. 11. Fluid electrons are present in the layer, in the same initial profile,

to provide charge neutralization. However, all current is initially carried by the ions.

I-J
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The ion layer is assumed to be tenuous relative to the background plasma, so that

b<< n. and v <<9, as in Sec. II. The layer ions are represented by 40,000 parti-

cles. 40,000 particles are also used to represent the background plasma ions. Finite

differencing is performed on a 100 by 100 grid and the time step is (ai t-0.1.

IV. SIMULATION RESULTS: LINEAR BEHAVIOR

Simulations have been performed using the code described in Sec. III to study

the linear and nonlinear behavior of ion layer kink instabilites. Figure 5 shows the

initial particle positions for an exponential rigid rotor ion layer; the background plasma

is also represented by particles, but these are not shown on this plot. The field-

reversal factor for this case is C-1.1 (B. slightly reversed on axis). The rigid rotor dis-

tribution of Eq. 6 has parameters set to ri-2.5 and r0-1.35, corresponding to R/a-=6.

The self-magnetic field index for this case is ,-5.9 and the normalized inverse

Alfven transit time is vAlaoja O.I. Table I indicates that this Vlasov equilibrium

should be unstable to both the m-2 and m-3 modes. Figure 6 shows the layer at

time t-50ol, when an m-3 mode has grown to large amplitude. The m- 3 character

is clearly evident in Fig. 7, which shows the azimuthal electric field contours. At a

later time, t-100w-', an m-2 mode clearly dominates, as can be seen in Figs. 8 and

9. At a much later time, t-300w-1 , the layer has become very thick and the earlier

mode structure has disappeared, as seen in Fig. 10.

The numerical calculation described in Sec. II predicts the linear growth rate for

the m-2 mode to be y/wcj-0.06 5, and for the m-3 mode to be ,/oc,-0 .1 2.

Growth rates were obtained from the simulation by measuring the perturbation in the

average radial particle position as a function of angle, 8r(9, t)-(< r(9, t)>-R). 8r(9)
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is then decomposed into its Fourier components. (Sr(t))2 for the m-2 and m- 3

modes is shown in Figs. 11 and 12. The growth rate for the m-2 mode is found to be

,/a~ci-O.065, and the growth rate for the ma-3 mode is found to be ,/wci-0.101, very

close to the expected values. The m-1 mode and modes with m>4 were found to be

stable, as predicted. In Fig. 2 the growth rates measured from simulations are plotted

as a function of field-reversal factor, with the results from Sec. II for modes m-2, 3,

4, and 5. Figure 4 shows the results of simulation and theory, giving growth rates as a

function of the inverse Alfven transit time. In both cases we find good agreement for

linear growth rates. The simulations have also confirmed the predictions that the ins-

tability thresholds should be lower in terms of 71, than the previous analytic results 4.

In order to obtain the azimuthal mode components of (Sr)2 (shown in Figs. II

and 12) used to determine the growth rates, the values of 8r(0) from 0-0 to 0-27r

were used. Because this information always contains an integer number of

wavelengths for an unstable mode, the real frequency of oscillation cannot be obtained

from the growth rate diagnostics. Real frequencies were determined by measuring the

frequency of the radial perturbation at a fixed angle. Because the real frequency of

these modes is comparable to the growth rate, (Sr)2 may grow several decades in one

period of oscillation. This made the measurement of real frequencies difficult except

for cases in which one mode dominated for a long period of time. For the limited

number of cases in which real frequencies could be evaluated, they were found to

agree with the predictions of Sec. II to within ten percent.

The physical mechanism for ion layer kink instabilities is the resonant interaction

of the betatron motion of layer particles with compressional Alfven waves in the back-

ground plasma, which occurs when w--wp-mfl. The maximum growth rates are
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expected to occur when the largest number of particles are experiencing resonant beta-

tron motion. This should occur when wp==mfl, since w2<< fl 2  This has been

observed in both our simulations and in the numerical calculations described in Sec.

II, as the peaks in Fig. 2 correspond to points where wp--mfl. The growth of the

m-3 mode in the preceding example may be traced to the fact that most particles in

this layer have betatron motion characterized by w,9/fl-3. An example of a particle

orbit from t-0 to t-60w l is shown in Fig. 13, with the m-3 character clearly

present. One reason that thresholds may occur at lower values of the self-magnetic

field index than 7, -m 2-1 is because even when the mean betatron frequency of the

layer is too small to produce a resonant interaction, the thermal spread of the layer

ions can still allow a substantial number of particles to resonate at a higher betatron

frequency and drive the instability.

V. SIMULATION RESULTS: NONLINEAR BEHAVIOR

Nonlinear effects which halt the growth of ion layer kink instabilities have been

indentified. Figures 11 and 12 show the end of exponential growth, or saturation of

the m-2 and m-3 instabilities for the unstable configuration of Sec. IV. The common

observation at saturation has been a nonlinear shift in the layer betatron frequency

which diminishes the resonant interaction of layer particles required to produce kink

instabilities.

During the growth of kink instabilities, a large fraction of the directed beam

energy is lost to thermal energy. This can be seen in Figs. 14 and 15, which show the

directed and thermal energies of the layer as a function of time. The thermal layer

pressure increases and is no longer in equilibrium with the magnetic forces compress-
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ing the layer. This pressure imbalance causes the layer to expand. The change in

layer thickness is clearly visible in Figs. 6 and 8, after the m-2 and m-3 instabilities

have grown to large amplitude. A measure of the expansion with time is shown in

Fig. 16, which plots < (r-< r(q)>) 2> as a function of time. The significant point is

that the layer betatron frequency is roughly proportional to R/a. Therefore, as the

layer increases its thickness, a, the betatron frequency and consequently the self-

magnetic field index is reduced. When the layer becomes sufficiently thick so that the

self-magnetic field index drops below the instability threshold for a given mode, that

mode ceases to grow exponentially, although nonlinear effects, producing layer heat-

ing, have been observed to persist somewhat beyond that point. An additional factor

is that the layer expansion increases the Alfven transit time across the layer, which

tends to stabilize the instability. This effect, however, is small compared to that pro-

duced by the shift in betatron frequency.

The effects of the nonlinear shift in betatron frequency can be seen in the exam-

ple of Sec. IV. The m-3 mode has the largest growth rate and is the dominant mode

at early times. However, at t-56w- the m-3 mode stops growing. At this point the

self-magnetic field index is qs-4.35 with vA/acjC-O.0 74. It can be seen from Table I

that these values are very close to the linear threshold of the m-3 mode. The m-2

mode is still linearly unstable and continues to grow until it eventually exceeds the

amplitude of the saturated m-3 mode, and then becomes the dominant mode, as seen

in Fig. 8. At t-14-l the m-2 mode stops growing. At this point %}-2.11 and

YA/awc-0.0 3 6. The Table I values can only be expected to give an approximate

result for this mode, since the layer has become thick enough so that the self-

magnetic field index is only an approximate concept as defined by Eq. Ic. Neverthe-

i



13

less, the m-2 mode stops growing at a time when when , is very near the threshold

predicted by Table 1. Similar cascades have been observed for higher azimuthal mode

numbers. For higher azimuthal mode numbers the mode with the largest mode

number will saturate first, followed by the successive saturation of the lower mode

numbers beginning with the largest remaining unstable mode and ending with the

saturation of the m-2 mode. It is rarely possible, however, to see clearly more than

two modes because the layer expands rapidly enough that the betatron frequency will

drop below the thresholds of modes before they can grow to a sufficiently large ampli-

tude to dominate. Nevertheless, the final state is similar, regardless of the number of

unstable modes present in the initial equilibrium. This has been confirmed in simula-

tions of thinner layers, which have had modes up to rm-5 unstable, yet result in virtu-

ally the same final state as the previously discussed example.

After all of the initial instabilities have saturated, the resultant thick layer appears

to be stable. No further instabilities have been observed for times as long as

t-,500(ai. However, the final state has a very high noise level and we cannot exclude

the possibility that instabilities may exist with smaller growth rates than those of the

initial kink modes. The layer is characterized by being thick, but still field-reversed.

This can be seen by the initial and final magnetic field profiles shown in Fig. 17. For

stronger layers, with field-reversal factors as large as C-1.8, the observed behavior has

been qualitatively the same, in that the final state is much thicker, relatively stable,

and field-reversal is maintained. The instabilities do not result in the loss of the layer,

but the final state has substantial electron currents and many non-axis-encircling ions.

The nature of the change in orbits can be seen in Fig. 18. The large axis-encircling

part of the orbit (see Fig. 13) corresponds to the initial m-3 betatron motion, which

-_-. .- wi-.
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drives the initial instability. As the layer broadens, the motion changes to m-2 beta-

tron motion and finally the orbit becomes non-axis-encircling when the layer thickness

becomes comparable to its major radius.

As a check on numerical accuracy, total energy has been monitored and has been

found to be conserved to within two percent of the variation of potential and kinetic

energies. Additional results of ion layer kink instability simulations are presented in

Appendix A.2.

VI. SUMMARY

The analysis of Lovelace 4 has been generalized numerically. The numerical

results show that the thresholds are at lower values of the self-magnetic field index

than predicted by earlier analytic results. Simulations have confirmed these lower

values of the instability thresholds. Instabilities have been found to grow on magne-

tohydrodynamic time scales; i.e. y-v~A/a. Nonlinear effects have been found to

reduce the betatron frequency of the layer so that ion betatron 'motion is no longer

resonant with the wave, halting exponential instability growth.

Although this study is only two-dimensional, the same type of behavior might be

expected for the fully three-dimensional case, since Finn and Sudan7 have obtained

similar results for the linear stability of ion layers in the bicycle tire limit. It is possible

that the kink instability could be stabilized by the addition of a toroidal component of

the magnetic field' 2 . Without a toroidal field it appears that the use of ion layers, car-

tying a substantial part of the current needed to produce field-reversal, is possible only

for thick layers with, large numbers of non-axis-encircling particles.
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Instability Thresholds

m=2 m=3 M==4  m=5
.20_04_2. 5.0 8.5

.10__.0_4. 8.0 12.0

m2 -1 3.0__ 8.0__ 15.0_ 24.0

TABLE 1. Approximate ion layer kink instability threshold values of the self-masnetic

field index, 71, at different values of (YA/lda). The thresholds were determined by

the numerical calculations discussed in Sec. 11. The threshold values of iq, as deter-

mined analytically by Lovelace, 71,-m 2-1, are also given.
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Or BS j

zI

FIG. I. The ion layer configuration. J, is in -0 direction.
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0.20
n-2 *
n-3 A
n-4 *
n-5 0

0.15

nf2 n3 n,4 na5

0.10 0

0.05

0.0 0.5 C 1.0 1.5

FIG. 2. Linear gowth rates, y, for ion layer kink instabilities as a function of field-

reversal factor, CM .(r-O)/Br. The solid curves are the results of the numerical

solution of Sec. I. The points are the results of hybrid simulations. R/a5 and

VA/l( aQ CI)=,O.lI.

-..



21

0.20

0.05-

0.01
0.0 0.5 1.0 1.5

FIG. 3. Real frequencies, w., as a function of field-reversal factor, ~,as determined

by the numerical solution of Sec. 11. R/a-S and vAl (w5 ,a)-O-l.
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"y/wci

0.15-

0.10-

0.05

0
0 0.1 0.2

VA/a W

FIG. 4. Linear growth rates, y, for the m-2 mode as a function of the inverse Alfven

transit time. The solid curve represents the numerical solution of Sec. I and the

points are the results of hybrid simulations. A/a-S and C-0.65.
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Y/R

- I

X/R

FIG. S. Initial particle positions for an ion layer unstable to m-2 and m-3 modes.

R/a-5 and C-1.1.
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Y/ R

-22

X/R

FIG. 6. Particle positions at t5a-, after an rn- 3 instability has grown to large am-

plitude.
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Y/R

-2 -I0 I2
X/R

FIG. 7. Contours or EO at f-SOw-1, showing the m-3 structure. Dotted lines

represent EO<O and solid lines represent 'Eo>O.
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Y/ R.

- .. 4 / 4 (~h.T.. "I-

X/R

FIG. 8. Particle positions at t-100w-'. An m-2 instability now dominates.
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Y/R

X/R

FIG. 9. Contours of Eq at r-100wct1, showing m-2 structure. Dotted lines represent

Ee<O and solid lines represent Eg>,O.



28

4A4
A".

............................... . ( J6

~ * X/R*.

FIG. 1. Partcle poitionsat t-30wc-f,~. afe i nsaiiisapa t aestrtd



29

E+03:::~-

E+Ot I L

E-+02

E -03

E -04

E-03 0

0 10020 300
Wci

FIG. 11. (ap)?2 for mode 2 as a function of time.



30

E+02

E +01 I IIA Ix I IIIII

1 1 0

E-0I

E-00

I.I

0 100 200 300

wci,~t

FIG. 12. (8r)2 for mode 3 as a function of time.
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FIG. 14. Directed beam energy, ~M .. where the summation is over all beam

particles, as a function of time, showing the loss of directed energy during instability

growth.
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FIG. 15. Beam thermal energy, jbAvP)+2Iwhere the summation is

over all particles, as a function of time, showing the beam heating during instability

growth.
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FIG. 16. < (r- <r() >)2> as a function of time, showing the layer expansion. The

expansion from t-0 to t-60'~ is due to the m-3 instability. At later times, from

t-0 1to t-m140e.-1, the expansion is due to the m-2 instability.
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FIG. 17. Magnetic field profiles, B:(r) averaged over 0, at t-O (dotted line) and at

t-3OUCt1, after instabilities have saturated (solid line).
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FIG. 18. Particle trajectory, for the particle shown in Fig. 13, from f0 to t-300u- 1.
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A.1 Numerical Calculation of Linear Growth Rates for Ion

Layer Kink Instabilities

This appendix describes the procedure used to calculate numerically the complex

frequencies from the equations of Lovelace'. Assuming perturbations of the form

1,(O, t)-7Erexp(imO'-iw t) Eq. la can be written as

(m 2112 -2m(lo+w)E,--l 2( +71s)E r + 8 F,. (A.1)

The radial perturbation is rigid, i.e. E,-Er(O't). With this assumption, Eq. la then

becomes

f(a)--m2n2+2mflnw-c 2 - fl 2(l+-0,) + 1-8 F,-0 (A.2)

The object is to find the complex roots, w, of Eq. A.2. This process would be straight-

forward, except for the fact that 8F, is a complicated function of W1, involving integra-

tion over the radial thickness of the layer and the solution of a second order

differential equation.

If a guess is made for the complex frequency, the following method will deter-

mine the corresponding value of (l/E,)F,. With the known rigid rotor profiles for

the current density and magnetic field, one can obtain A,(r), A b (r), and #'(r) from

2

Abuw VA (A.3b)
C(1 +( V C) 2)2-(W/o c,)2
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*' ~~~[.L4irJdc (A.3c)

It is then possible to solve for AB', from the second order differential equation

rI r 8rc2 r2 JI r I 8r J

M2A a lve1 - (A&)+OI imAb (A.4)
mr 2  C2 r r 8r 8r r

At the conducting wall at r-r. we have the boundary condition

1I LI O B' z imA b(rv) (A.5)
AB' r rwAa (rw)

and at r-0, AB',(O)-O. This is a second order two-point boundary value problem

and is solved by finite difference methods. Once &B'. is determined it is possible to

obtain 8B., 8Er, and 8E9 from

8B_ 1r .
--- B'z + Jb (A.6a)
er C

8CE, -a- .M(AB':+O)-Ab(-LAB'Z + 4 (A.6b)

The quantities 71, <8B.>, <8E,>, and <8E4>, which are used in 8F,, are

evaluated by numerical integration over the layer using expression for the average,

< .. > >_- f rdrJ,(r) f.. / f , (r) .

Then, using

MhcE ~o-L , >+ q -L1 <8E,> - 'q 1<E> (A.7)
bMbc b , Mbme,

all of the terms in Eq. A.2 are now known for the given frequency guess.

The above procedure is repeated for each guess of w, as a function call in a

Muller's method 2 subroutine. Muller's method will provide guesses for the complex
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roots of f(to) in Eq. A.2 until the given convergence criteria are met. The Muller's

method subroutine used in this code is based on a subroutine written by A.u-Yeung

and Friedman3.

II

>2
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A.2 Further Results of Ion Layer Kink Instability Simulations

This appendix presents results from two runs which demonstrate the effects of

increasing field-reversal and decreasing layer thickness on ion layer kink instabilities.

I. Decreased Layer Thickness

In this simulation we use the same background density and field-reversal as used

in the run described in detail in the main section, i.e., v4/aw,(c,-O.1 and C-1.1. How-

ever, we reduce the initial layer thickness so that R/a-O rather than 6. This has the

effect of increasing the self-magnetic field index from 71-5.9 to -,-13.0. This value

of 7s is slightly larger than the threshold for the m-5 mode. Therefore, we expect

modes 2, 3, 4, and 5 to be unstable. Our simulation results confirm this. The growth

of the m-5 mode is relatively small and is not evident in the snapshot diagnostics.

Figure 1 shows the initial particle positions for this thin layer. In Fig. 2, at t- 30w J,

an m-4 instability is apparent, as expected, since its growth rate is the largest of the

unstable modes. This mode ceases to grow at .,36 71. The m-3 mode, having a

smaller growth rate than the m-4 mode, continues to grow and its amplitude eventu-

ally exceeds the amplitude of the m--4 mode. This can be seen in Fig. 3 at t-7O(6 -.

At a considerably later time, t-,130w1, the m-2 mode dominates, as is clear from

Fig. 4. The time evolution of (a r)2 is plotted in Figs. 5-8 for these modes. Figure 9

shows the change in < (r-< r(0) >)2> with time. The increase in layer thickness due

to each of the modes, m-2, 3, and 4, can be seen in this figure. Although this run is
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not as long as the one described in the main section, note that at t-220a, 1 , after all

modes have saturated, the magnitude of <(r-<r(9)>)2> at a comparable time is

approximately the same, indicating that the only effect of making a layer thinner is

that it must proceed through the saturation of more instabilities before it reaches the

eventual thick layer state.

2. Increased Field-Reversal

This run has the same background plasma density as the run discussed in the

main section. The layer thickness is slightly larger, RIa-S rather than 6. The pri-

mary difference is that the degree of field-reversal has been increased from C-i.1 to

C-1.38. This has the effect of increasing the self-magnetic field index from .Q,-5.9 to

ll.-12.3. This value is sufficiently large so that the m-4 mode will be unstable in

addition to the m.-2 and m-3 modes. Figure 10 shows the initial particle positions

L for this layer. Figure II shows the layer at ,-50o t, after and m-4 instability has

grown to large amplitude. In Fig. 12, at t-70,, the m- 4 mode has saturated and

the m-3 mode now dominates. Finally, in Fig. 13, at t-220wcvg, after the exponential

growth of all modes has stopped, some m.-2 structure still remains due to the growth

of the last unstable mode, the m-2 mode. This run ended at this point, however,

from the results of other similar runs, such as the one described in the main section,

we would expect this structure to eventually dissappear. Figure 14 shows the change

in the magnetic field profile. Note that field-reversal is maintained.

iI
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FIGA1 Initial particle positions for thin layer, (R/a)-lO, C-II.
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FIGA2 Particle positions at t.30w-', after an m-4 instability has become apparent.



44

Y/R

IL



46

Y/R L .~

0

-2

L. . . ...

X/R

FIG.A4 Particle positions at t-l3O..;'. The m'-2 mode now dominates.
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FIG. A8 (a r) 2 as a function of time for the rn-S mode.
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FIG. A9 < (r-< r(9) >) 2> as a function of time.
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FIG.A11 Particle positions at t-5Oal. An m-4 mnode has grown to large amnplitude.
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FIG.A13 Particle positions at t-22Ow~jl. The structure of the m-2 mode, the last

mode to saturate, is still apparent.
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FIG. A14 Magnetic field proffies, B,(r) averaged over 0, at t-0 (dotted line) and at

t-220;' (solid line).
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